Class numbers of real quadratic number fields

نویسندگان

چکیده

منابع مشابه

Class Numbers of Real Quadratic Number Fields by Ezra Brown

This article is a study of congruence conditions, modulo powers of two, on class number of real quadratic number fields Q(vu), for which d has at most thtee distinct prime divisors. Techniques used are those associated with Gaussian composition of binary quadratic forms. 1. Let hid) denote the class number of the quadratic field Qi\ß) and let h id) denote the number of classes of primitive bina...

متن کامل

Computation of class numbers of quadratic number fields

We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers ...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Computations of class numbers of real quadratic fields

In this paper an unconditional probabilistic algorithm to compute the class number of a real quadratic field Q( √ d) is presented, which computes the class number in expected time O(d1/5+ ). The algorithm is a random version of Shanks’ algorithm. One of the main steps in algorithms to compute the class number is the approximation of L(1, χ). Previous algorithms with the above running time O(d1/...

متن کامل

Indivisibility of Class Numbers of Real Quadratic Fields

Although the literature on class numbers of quadratic fields is quite extensive, very little is known. In this paper we consider class numbers of real quadratic fields, and as an immediate consequence we obtain an estimate for the number of vanishing Iwasawa λ invariants. Throughout D will denote the fundamental discriminant of the quadratic number fieldQ( √ D), h(D) its class number, and χD :=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1974-0364172-9